References for Townsend Letter article “DHEA Physiology, Deficiency, and Treatment” by Alan B. McDaniel, MD

    1. Friess E, Schiffelholz T, Steckler T, Steiger A. Dehydroepiandrosterone–a neurosteroid. Eur J Clin Investig. 2000 Dec; 30 Suppl 3: 46–50.
    2. Prough RA, Clark BJ, Carolyn M Klinge CM. Novel mechanisms for DHEA action. J Molec Endocrinol. 2016 Apr; 53(3):R139-R155.
    3. Labrie F, Luu-The V et al. “Is dehydroepiandrosterone a hormone?” J. Endocrinol. 2005 Nov.; 187 (2): 169–96.
    4. Hammer F, Subtil S et al. No evidence for hepatic conversion of dehydroepiandrosterone (DHEA) sulfate to DHEA: in vivo and in vitro studies. J Clin Endocrinol Metab. 2005 Jun;90(6):3600-5.
    5. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011 Feb;32(1):81-151. Erratum in: Endocr Rev. 2011 Aug;32(4):579.
    6. Labrie F, Luu-The V et al. The key role of 17 beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids. 1997 Jan;62(1):148-58.
    7. Grimshaw RN, Mitchell BF, Challis JR. Steroid modulation of pregnenolone to progesterone conversion by human placental cells in vitro. Am J Obstet Gynecol. 1983 Jan 15;145(2):234-8.
    8. Gooren LJ, Bunck MC. Androgen replacement therapy: present and future. Drugs. 2004;64(17):1861-91.
    9. Sakhri S, Gooren LJ. Safety aspects of androgen treatment with 5alpha-dihydrotestosterone. Andrologia. 2007 Dec;39(6):216-22.
    10. McDaniel AB. The clinical importance of 5alpha-reductase in human health and pathology, part 2: Women – polycystic ovary syndrome, premenstrual dysphoric disorder, hormone replacement therapy and beyond. Townsend Letter. 2017 June; (407):60-68.
    11. Klinge CM, Clark BJ, Prough RA. Dehydroepiandrosterone Research: Past, Current, and Future. Vitam Horm. 2018;108:1-28.
    12. Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev. 2006;38(1-2):89-116.
    13. Mo Q, Lu SF, Simon NG. Dehydroepiandrosterone and its metabolites: differential effects on androgen receptor trafficking and transcriptional activity. J Steroid Biochem Mol Biol. 2006 Apr;99(1):50-8.
    14. Clark BJ, Prough RA, Klinge CM. Mechanisms of Action of Dehydroepiandrosterone. Vitam Horm. 2018;108:29-73.
    15. Friess E, Schiffelholz T, Steckler T, Steiger A. Dehydroepiandrosterone–a neurosteroid. Eur J Clin Invest. 2000 Dec;30 Suppl 3:46-50.
    16. Maninger N, Wolkowitz OM et al. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol. 2009 Jan;30(1):65-91.
    17. Stárka L, Dušková M, Hill M. Dehydroepiandrosterone: a neuroactive steroid. J Steroid Biochem Mol Biol. 2015 Jan;145:254-60.
    18. Allolio B, Arlt W. DHEA treatment: myth or reality? Trends Endocrinol Metab. 2002 Sep;13(7):288-94.
    19. Rutkowski K, Sowa P, et al. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs. 2014 Jul;74(11):1195-207.
    20. Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol Endocrinol. 2016 Apr;56(3):R139-55.
    21. Labrie F, Bélanger A et al. Bioavailability and metabolism of oral and percutaneous dehydroepiandrosterone in postmenopausal women. J Steroid Biochem Mol Biol. 2007 Oct;107(1-2):57-69.
    22. Mueller JW, Gilligan LC et al. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev. 2015 Oct;36(5):526-63.
    23. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone- binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981 Jul;53(1):58-68.
    24. Antoniou-Tsigkos A, Zapanti E, Ghizzoni L, Mastorakos G. Adrenal Androgens. 2019 Jan 5. In: Feingold KR, Anawalt B et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–.
    25. Rege J, Rainey WE. The steroid metabolome of adrenarche. J Endocrinol. 2012 Aug;214(2):133-43.
    26. Utriainen P, Laakso S et al. Premature adrenarche–a common condition with variable presentation. Horm Res Paediatr. 2015;83(4):221-31.
    27. Havelock JC, Auchus RJ, Rainey WE. The rise in adrenal androgen biosynthesis: adrenarche. Semin Reprod Med. 2004 Nov;22(4):337-47.
    28. Arlt W, Justl HG et al. Oral dehydroepiandrosterone for adrenal androgen replacement: pharmacokinetics and peripheral conversion to androgens and estrogens in young healthy females after dexamethasone suppression. J Clin Endocrinol Metab. 1998 Jun;83(6):1928-34.
    29. Parker CR Jr. Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging. Steroids. 1999 Sep;64(9):640-7; Kaler LW, Neaves WB. Attrition of the human Leydig cell population with advancing age. Anat Rec. 1978 Dec;192(4):513-8.
    30. Yeap BB, Manning L et al. Progressive impairment of testicular endocrine function in ageing men: Testosterone and dihydrotestosterone decrease, and luteinizing hormone increases, in men transitioning from the 8th to 9th decades of life. Clin Endocrinol (Oxf). 2018 Jan;88(1):88-95.
    31. Davison SL, Bell R et al. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005 Jul;90(7):3847-53.
    32. Fogle RH, Stanczyk FZ, Zhang X, Paulson RJ. Ovarian androgen production in postmenopausal women. J Clin Endocrinol Metab. 2007 Aug;92(8):3040-3.
    33. Labrie F. DHEA, important source of sex steroids in men and even more in women. Prog Brain Res. 2010;182:97-148.
    34. Kakiashvili T, Leszek J, Rutkowski K. The medical perspective on burnout. Int J Occup Med Environ Health. 2013 Jun;26(3):401-12.
    35. Scott LV, Svec F, Dinan T. A preliminary study of dehydroepiandrosterone response to low-dose ACTH in chronic fatigue syndrome and in healthy subjects. Psychiatry Res. 2000 Dec 4;97(1):21-8.
    36. Dutheil F, de Saint Vincent S et al. DHEA as a Biomarker of Stress: A Systematic Review and Meta-Analysis. Front Psychiatry. 2021 Jul 6;12:688367.
    37. Morgan CA, Southwick S, Hazlett G. Relations among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation and objective performance in humans exposed to acute stress. Arch Gen Psychiatry. 2004; 61(8):819-25.
    38. Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest. 2002 Nov;122(5):1784-96.
    39. Foster MA, Taylor AE et al. Mapping the Steroid Response to Major Trauma from Injury to Recovery: A Prospective Cohort Study. J Clin Endocrinol Metab. 2020 Mar 1;105(3):925–37.
    40. Johnson EO, Kamilaris TC et al. Effects of short- and long-duration hypothyroidism on function of the rat hypothalamic- pituitary-adrenal axis. J Endocrinol Invest. 2013 Feb;36(2):104-10.
    41. Pervanidou P, Chrousos GP. Posttraumatic stress disorder in children and adolescents: neuroendocrine perspectives. Sci Signal. 2012 Oct 9;5(245):pt6.
    42. Tomas C, Newton J, Watson S. A review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN Neurosci. 2013 Sep 30;2013:784520.
    43. Straub RH, Schölmerich J, Zietz B. Replacement therapy with DHEA plus corticosteroids in patients with chronic inflammatory diseases–substitutes of adrenal and sex hormones. Z Rheumatol. 2000;59 Suppl 2:II/108-18.
    44. Kuratsune H, Yamaguti K et al. Dehydroepiandrosterone sulfate deficiency in chronic fatigue syndrome. Int J Mol Med. 1998 Jan;1(1):143-6.
    45. van Zuiden M, Haverkort SQ et al. DHEA and DHEA-S levels in posttraumatic stress disorder: A meta-analytic review. Psychoneuroendocrinology. 2017 Oct;84:76-82.
    46. De Falco M, Forte M, Laforgia V. Estrogenic and anti-androgenic endocrine disrupting chemicals and their impact on the male reproductive system. Front Environ Sci. 2015 Feb 17
    47. Chen T, Liu HX et al. Developmental origins of inflammatory and immune diseases. Mol Hum Reprod. 2016 Aug;22(8):858-65.
    48. Piazza JR, Almeida DM, Dmitrieva NO, Klein LC. Frontiers in the use of biomarkers of health in research on stress and aging. J Gerontol B Psychol Sci Soc Sci. 2010 Sep;65(5):513-25.
    49. Feldman HA, Longcope C et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002 Feb;87(2):589-98.
    50. Walther A, Philipp M, Lozza N, Ehlert U. The rate of change in declining steroid hormones: a new parameter of healthy aging in men? Oncotarget. 2016 Sep 20;7(38):60844-60857.
    51. Roy TA, Blackman MR et al. Interrelationships of serum testosterone and free testosterone index with FFM and strength in aging men. Am J Physiol Endocrinol Metab. 2002 Aug;283(2):E284-94.
    52. Hyde Z, Flicker L et al. Low free testosterone predicts frailty in older men: the health in men study. J Clin Endocrinol Metab. 2010 Jul;95(7):3165-72.
    53. Tajar A, O’Connell MD et al.; European Male Aging Study Group. Frailty in relation to variations in hormone levels of the hypothalamic-pituitary-testicular axis in older men: results from the European male aging study. J Am Geriatr Soc. 2011 May;59(5):814-21.
    54. Baylis D, Bartlett DB et al. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age (Dordr). 2013 Jun;35(3):963-71.
    55. Hsu B, Cumming RG et al. Temporal Changes in Androgens and Estrogens Are Associated With All-Cause and Cause- Specific Mortality in Older Men. J Clin Endocrinol Metab. 2016 May;101(5):2201-10.
    56. Lois K, Kassi E, Prokopiou M, Chrousos GP. Adrenal Androgens and Aging. 2014 Jun 18. In: Feingold KR, Anawalt B et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–. Last Update: June 18, 2014.
    57. Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol. 2015 Jan;145:213-25.
    58. Du Y, Xu C et al. Serum concentrations of oxytocin, DHEA and follistatin are associated with osteoporosis or sarcopenia in community-dwelling postmenopausal women. BMC Geriatr. 2021 Oct 12;21(1):542.
    59. Cleare AJ. The neuroendocrinology of chronic fatigue syndrome. Endocr Rev. 2003 Apr;24(2):236-52.
    60. Souza-Teodoro LH, de Oliveira C, Walters K, Carvalho LA. Higher serum dehydroepiandrosterone sulfate protects against the onset of depression in the elderly: Findings from the English Longitudinal Study of Aging (ELSA). Psychoneuroendocrinology. 2016 Feb;64:40-6.
    61. Michikawa T, Nishiwaki Y et al. Higher serum dehydroepiandrosterone sulfate levels are protectively associated with depressive symptoms in men, but not in women: a community-based cohort study of older Japanese. Am J Geriatr Psychiatry. 2013 Nov;21(11):1154-63.
    62. Dong X, Jiang H, Li S, Zhang D. Low Serum Testosterone Concentrations Are Associated With Poor Cognitive Performance in Older Men but Not Women. Front Aging Neurosci. 2021 Nov 1;13:712237.
    63. Jagielska GW, Przedlacki J, Bartoszewicz Z, Racicka E. Bone mineralization disorders as a complication of anorexia nervosa – etiology, prevalence, course and treatment. Psychiatr Pol. 2016;50(3):509-20. English, Polish.
    64. Wu C, Wei K, Jiang Z. 5α-reductase activity in women with polycystic ovary syndrome: a systematic review and meta- analysis. Reprod Biol Endocrinol. 2017 Mar 27;15(1):21.
    65. Kayampilly PP, Wanamaker BL et al. Stimulatory effect of insulin on 5alpha-reductase type 1 (SRD5A1) expression through an Akt-dependent pathway in ovarian granulosa cells. Endocrinology. 2010 Oct;151(10):5030-7.
    66. Dunaif A, Green G et al. Acanthosis Nigricans, insulin action, and hyperandrogenism: clinical, histological, and biochemical findings. J Clin Endocrinol Metab. 1991 Sep;73(3):590-5.
    67. von Mühlen D, Laughlin GA, Kritz-Silverstein D, Barrett-Connor E. The Dehydroepiandrosterone And WellNess (DAWN) study: research design and methods. Contemp Clin Trials. 2007 Feb;28(2):153-68.
    68. Chen W, Tsai SJ et al. Testosterone synthesized in cultured human SZ95 sebocytes derives mainly from dehydroepiandrosterone. Exp Dermatol. 2010 May;19(5):470-2.
    69. Weissman A, Horowitz E et al. Dehydroepiandrosterone supplementation increases baseline follicular phase progesterone levels. Gynecol Endocrinol. 2011 Dec;27(12):1014-7.
    70. Stomati M, Monteleone P et al. Six-month oral dehydroepiandrosterone supplementation in early and late postmenopause. Gynecol Endocrinol. 2000 Oct;14(5):342-63.
    71. Dehennin L, Ferry M et al. Oral administration of dehydroepiandrosterone to healthy men: alteration of the urinary androgen profile and consequences for the detection of abuse in sport by gas chromatography-mass spectrometry. Steroids. 1998 Feb;63(2):80-7.
    72. Wallace MB, Lim J, Cutler A, Bucci L. Effects of dehydroepiandrosterone vs androstenedione supplementation in men. Med Sci Sports Exerc. 1999 Dec;31(12):1788-92.
    73. Hunt PJ, Gurnell EM, Huppert FA, Richards C, Prevost AT, Wass JA, Herbert J, Chatterjee VK. Improvement in mood and fatigue after dehydroepiandrosterone replacement in Addison’s disease in a randomized, double blind trial. J Clin Endocrinol Metab. 2000 Dec;85(12):4650-6.
    74. Nair KS, Rizza RA et al. DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med. 2006 Oct 19;355(16):1647-59.
    75. McDaniel AB. Diagnose and treat hypothyroidism in 2021: New Endocrinology. Pt. 3. Townsend Letter. 2021 July (456):68-75.
    76. Smith T, Batur P. Prescribing testosterone and DHEA: The role of androgens in women. Cleve Clin J Med. 2021 Jan 1;88(1):35-43.
    77. Libè R, Barbetta L et al. Effects of dehydroepiandrosterone (DHEA) supplementation on hormonal, metabolic and behavioral status in patients with hypoadrenalism. J Endocrinol Invest. 2004 Sep;27(8):736-41.
    78. Gurnell EM, Hunt PJ et al. Long-term DHEA replacement in primary adrenal insufficiency: a randomized, controlled trial. J Clin Endocrinol Metab. 2008 Feb;93(2):400-9.
    79. Li Y, Ren J et al. A dose-response and meta-analysis of dehydroepiandrosterone (DHEA) supplementation on testosterone levels: perinatal prediction of randomized clinical trials. Exp Gerontol. 2020 Nov;141:111110.
    80. Römmler A. Adrenopause und Dehydroepiandrosteron: Pharmakotherapie versus Substitution [Adrenopause and dehydroepiandrosterone: pharmacological therapy versus replacement therapy]. Gynakol Geburtshilfliche Rundsch. 2003 Apr;43(2):79-90. German.
    81. Genazzani AR, Inglese S et al. Long-term low-dose dehydroepiandrosterone replacement therapy in aging males with partial androgen deficiency. Aging Male. 2004 Jun;7(2):133-43.
    82. Martina V, Benso A et al. Short-term dehydroepiandrosterone treatment increases platelet cGMP production in elderly male subjects. Clin Endocrinol (Oxf). 2006 Mar;64(3):260-4.
    83. Taylor MK, Padilla GA et al. Effects of dehydroepiandrosterone supplementation during stressful military training: a randomized, controlled, double-blind field study. Stress. 2012 Jan;15(1):85-96.
    84. Baulieu EE, Thomas G et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4279-84.
    85. Reiter WJ, Schatzl G et al. Dehydroepiandrosterone in the treatment of erectile dysfunction in patients with different organic etiologies. Urol Res. 2001 Aug;29(4):278-81.
    86. Tekdogan U, Tuncel A et al. Effect of sildenafil citrate treatment on serum dehydroepiandrosterone sulfate levels in patients with erectile dysfunction. Urology. 2006 Sep;68(3):626-30.
    87. Morales A, Black A et al. Androgens and sexual function: a placebo-controlled, randomized, double-blind study of testosterone vs. dehydroepiandrosterone in men with sexual dysfunction and androgen deficiency. Aging Male. 2009 Dec;12(4):104-12.
    88. Bloch M, Meiboom H et al. The use of dehydroepiandrosterone in the treatment of hypoactive sexual desire disorder: a report of gender differences. Eur Neuropsychopharmacol. 2013 Aug;23(8):910-8.
    89. Davis SR, Baber R et al. Global Consensus Position Statement on the Use of Testosterone Therapy for Women. J Clin Endocrinol Metab. 2019 Oct 1;104(10):4660-4666.
    90. Wierman ME, Arlt W et al. Androgen therapy in women: a reappraisal: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2014 Oct;99(10):3489-510. doi: 10.1210/jc.2014-2260. PMID: 25279570.
    91. North American Menopause Society. The role of testosterone therapy in postmenopausal women: position statement of The North American Menopause Society. Menopause. 2005 Sep-Oct;12(5):496-511; quiz 649.
    92. Qin JC, Fan L, Qin AP. The effect of dehydroepiandrosterone (DHEA) supplementation on women with diminished ovarian reserve (DOR) in IVF cycle: Evidence from a meta-analysis. J Gynecol Obstet Hum Reprod. 2017 Jan;46(1):1-7.
    93. Chimote BN, Chimote NM. Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEA-S) in Mammalian Reproduction: Known Roles and Novel Paradigms. Vitam Horm. 2018;108:223-250.
    94. Zhang Y, Li M et al. Randomized Controlled Study of the Effects of DHEA on the Outcome of IVF in Endometriosis. Evid Based Complement Alternat Med. 2021 Oct 14;2021:3569697.
    95. Wong QHY, Yeung TWY et al. The effect of 12-month dehydroepiandrosterone supplementation on the menstrual pattern, ovarian reserve markers, and safety profile in women with premature ovarian insufficiency. J Assist Reprod Genet. 2018 May;35(5):857-862.
    96. Barnhart KT, Freeman E et al. The effect of dehydroepiandrosterone supplementation to symptomatic perimenopausal women on serum endocrine profiles, lipid parameters, and health-related quality of life. J Clin Endocrinol Metab. 1999 Nov;84(11):3896-902.
    97. Zhu Y, Qiu L et al. The effect of dehydroepiandrosterone (DHEA) supplementation on estradiol levels in women: A dose-response and meta-analysis of randomized clinical trials. Steroids. 2021 Sep;173:108889.
    98. Labrie F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. J Steroid Biochem Mol Biol. 2015 Jan;145:133-8.
    99. Arlt W. Androgen therapy in women. Eur J Endocrinol. 2006 Jan;154(1):1-11.
    100. Davis SR, Baber R et al. Global Consensus Position Statement on the Use of Testosterone Therapy for Women. Climacteric. 2019 Oct;22(5):429-434. Erratum in: Climacteric. 2019 Dec;22(6):637. PMID: 31474158.
    101. dos Santos RL, da Silva FB, Ribeiro RF Jr, Stefanon I. Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig. 2014 May;18(2):89-103.
    102. Aziz A, Brännström M, Bergquist C, Silfverstolpe G. Perimenopausal androgen decline after oophorectomy does not influence sexuality or psychological well-being. Fertil Steril. 2005 Apr;83(4):1021-8.
    103. Lin H, Li L et al. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA supplementation of bone mineral density in healthy adults. Gynecol Endocrinol. 2019 Nov;35(11):924-931.
    104. Hu Y, Wan P, An X, Jiang G. Impact of dehydroepiandrosterone (DHEA) supplementation on testosterone concentrations and BMI in elderly women: A meta-analysis of randomized controlled trials. Complement Ther Med. 2021 Jan;56:102620.
    105. Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging. 2016 Sep 22;11:1317-1324.
    106. The 2020 genitourinary syndrome of menopause position statement of The North American Menopause Society. Menopause. 2020 Sep;27(9):976-992.
    107. Cellai I, Di Stasi V et al. Insight on the Intracrinology of Menopause: Androgen Production within the Human Vagina. Endocrinology. 2021 Feb 1;162(2):bqaa219.
    108. Labrie F, Archer DF et al.; members of the VVA Prasterone Research Group. Efficacy of intravaginal dehydroepiandrosterone (DHEA) on moderate to severe dyspareunia and vaginal dryness, symptoms of vulvovaginal atrophy, and of the genitourinary syndrome of menopause. Menopause. 2018 Nov;25(11):1339-1353.
    109. Bouchard C, Labrie F et al.; VVA Prasterone Group. Effect of intravaginal dehydroepiandrosterone (DHEA) on the female sexual function in postmenopausal women: ERC-230 open-label study. Horm Mol Biol Clin Investig. 2016 Mar;25(3):181-90.
    110. Barton DL, Sloan JA et al. Evaluating the efficacy of vaginal dehydroepiandosterone for vaginal symptoms in postmenopausal cancer survivors: NCCTG N10C1 (Alliance). Support Care Cancer. 2018 Feb;26(2):643-650.
    111. Portman DJ, Labrie F et al.; other participating members of VVA Prasterone Group. Lack of effect of intravaginal dehydroepiandrosterone (DHEA, prasterone) on the endometrium in postmenopausal women. Menopause. 2015 Dec;22(12):1289-95.
    112. Barton DL, Shuster LT et al. Systemic and local effects of vaginal dehydroepiandrosterone (DHEA): NCCTG N10C1 (Alliance). Support Care Cancer. 2018 Apr;26(4):1335-1343.
    113. Hankinson SE, Eliassen AH. Circulating sex steroids and breast cancer risk in premenopausal women. Horm Cancer. 2010 Feb;1(1):2-10.
    114. Zeleniuch-Jacquotte A, Bruning PF et al. Relation of serum levels of testosterone and dehydroepiandrosterone sulfate to risk of breast cancer in postmenopausal women. Am J Epidemiol. 1997; 145:1030-1038.
    115. Dorgan JF, Stanczyk FZ et al. Relationship of serum dehydroepiandrosterone (DHEA), DHEA sulfate, and 5- androstene-3 beta, 17 beta-diol to risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 1997 Mar;6(3):177-81.
    116. Upmanyu N, Bulldan A, Failing K, Scheiner-Bobis G. DHEAS prevents pro-metastatic and proliferative effects of 17ß-estradiol on MCF-7 breast cancer cells. Biochim Biophys Acta Mol Cell Res. 2020 Feb;1867(2):118600.
    117. Miller KK, Al-Rayyan N et al. DHEA metabolites activate estrogen receptors alpha and beta. Steroids. 2013 Jan;78(1):15-25.
    118. López-Marure R, Contreras PG, Dillon JS. Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol. 2011 Jun 25;660(2-3):268-74.
    119. McNamara KM, Moore NL et al. Complexities of androgen receptor signalling in breast cancer. Endocr Relat Cancer. 2014 Aug;21(4):T161-81.
    120. Ozkaya E, Cakir E et al. Is hyperandrogenemia protective for fibrocystic breast disease in PCOS? Gynecol Endocrinol. 2012 Jun;28(6):468-71.
    121. Baschetti R. Investigations of hydrocortisone and fludrocortisone in the treatment of chronic fatigue syndrome. J Clin Endocrinol Metab. 1999 Jun;84(6):2263-4.
    122. Cleare AJ, Heap E et al. Low-dose hydrocortisone in chronic fatigue syndrome: a randomised crossover trial. Lancet. 1999 Feb 6;353(9151):455-8.
    123. Cleare AJ, Miell J et al. Hypothalamo-pituitary-adrenal axis dysfunction in chronic fatigue syndrome, and the effects of low-dose hydrocortisone therapy. J Clin Endocrinol Metab. 2001 Aug;86(8):3545-54.
    124. Papadopoulos AS, Cleare AJ. Hypothalamic-pituitary-adrenal axis dysfunction in chronic fatigue syndrome. Nat Rev Endocrinol. 2011 Sep 27;8(1):22-32.
    125. Himmel PB, Seligman TM. A pilot study employing Dehydroepiandrosterone (DHEA) in the treatment of chronic fatigue syndrome. J Clin Rheumatol. 1999 Apr;5(2):56-9.
    126. Peixoto C, Grande AJ, Mallmann MB, Nardi AE, Cardoso A, Veras AB. Dehydroepiandrosterone (DHEA) for Depression: A Systematic Review and Meta-Analysis. CNS Neurol Disord Drug Targets. 2018;17(9):706-711.
    127. Min L. Functional hypercortisolism, visceral obesity and metabolic syndrome. Endocr Pract. 2016 Apr;22(4):506-8.
    128. Chen H, Jin Z et al. Effects of dehydroepiandrosterone (DHEA) supplementation on cortisol, leptin, adiponectin, and liver enzyme levels: A systematic review and meta-analysis of randomised clinical trials. Int J Clin Pract. 2021 Nov;75(11):e14698.
    129. Corona G, Rastrelli G et al. Dehydroepiandrosterone supplementation in elderly men: a meta-analysis study of placebo-controlled trials. J Clin Endocrinol Metab. 2013 Sep;98(9):3615-26.
    130. Wang F, He Y, O Santos H, Sathian B, C Price J, Diao J. The effects of dehydroepiandrosterone (DHEA) supplementation on body composition and blood pressure: A meta-analysis of randomized clinical trials. Steroids. 2020 Nov;163:108710.
    131. Waxman DJ. Role of metabolism in the activation of dehydroepiandrosterone as a peroxisome proliferator. J Endocrinol. 1996 Sep;150 Suppl:S129-47.
    132. Teixeira CJ, Veras K, de Oliveira Carvalho CR. Dehydroepiandrosterone on metabolism and the cardiovascular system in the postmenopausal period. J Mol Med (Berl). 2020 Jan;98(1):39-57.
    133. Qin Y, O Santos H et al. Effects of dehydroepiandrosterone (DHEA) supplementation on the lipid profile: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2020 Aug 28;30(9):1465-1475.
    134. Brahimaj A, Muka T et al. Serum dehydroepiandrosterone levels are associated with lower risk of type 2 diabetes: the Rotterdam Study. Diabetologia. 2017 Jan;60(1):98-106.
    135. Dhatariya K, Bigelow ML, Nair S. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes. 2005 Mar; 54(3):765-769.
    136. Villareal DT, Holloszy JO. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA. 2004 Nov 10;292(18):2243-8.
    137. Weiss EP, Villareal DT et al. Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging (Albany NY). 2011 May;3(5):533-42.
    138. Wang X, Feng H et al. The influence of dehydroepiandrosterone (DHEA) on fasting plasma glucose, insulin levels and insulin resistance (HOMA-IR) index: A systematic review and dose response meta-analysis of randomized controlled trials. Complement Ther Med. 2020 Dec;55:102583.
    139. Ortega-Calderon YN, Lopez-Marure R. Dehydroepiandrosterone inhibits proliferation and suppresses migration of human cervical cancer cell lines. Anticancer Res. 2014 Aug; 34(8):4039-4044.
    140. Giron RA, Montano LF, Escobar, ML, Lopez-Marure R. Dehydroepiandrosterone inhibits the proliferation and induces the death of HPV-positive and HPV-negative cervical cancer cells through an androgen- and estrogen-receptor independent mechanism. FEBS J. 2009 Oct; 276(19):5598-5609.
    141. Varet J, Vincent L et al. Dose-dependent effect of dehydroepiandrosterone, but not of its sulphate ester, on angiogenesis. Eur J Pharmacol. 502: 21-30, 2004.
    142. Prall SP, Muehlenbein MP. DHEA Modulates Immune Function: A Review of Evidence. Vitam Horm. 2018;108:125-144.
    143. Prall SP, Muehlenbein MP. Dehydroepiandrosterone and multiple measures of functional immunity in young adults. Am J Hum Biol. 2015 Nov-Dec;27(6):877-80.
    144. Tomo S, Banerjee M, Sharma P, Garg M. Does dehydroepiandrosterone sulfate have a role in COVID-19 prognosis and treatment? Endocr Regul. 2021 Sep 13;55(3):174-181.
    145. Xie M, Zhong Y et al. Impact of dehydroepianrosterone (DHEA) supplementation on serum levels of insulin-like growth factor 1 (IGF-1): A dose-response meta-analysis of randomized controlled trials. Exp Gerontol. 2020 Jul 15;136:110949.
    146. Grimley Evans J, Malouf R, Huppert F, van Niekerk JK. Dehydroepiandrosterone (DHEA) supplementation for cognitive function in healthy elderly people. Cochrane Database Syst Rev. 2006 Oct 18;(4):CD006221.
    147. REPORT 5 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-09) The Use of Hormones for “Antiaging”: A Review of Efficacy and Safety (Reference Committee E.) file:///C:/Users/abmcd/AppData/Local/Temp/a09-csaph-antiaging-hormones.pdf. Accessed 12.4.2021.
    148. Rabijewski M, Papierska L et al. Supplementation of dehydroepiandrosterone (DHEA) in pre- and postmenopausal women – position statement of expert panel of Polish Menopause and Andropause Society. Ginekol Pol. 2020;91(9):554- 562.
    149. Labrie F, Diamond P et al. Effect of 12-month dehydroepiandrosterone replacement therapy on bone, vagina, and endometrium in postmenopausal women. J Clin Endocrinol Metab. 1997 Oct; 82(10):3498-505.
    150. Labrie F, Luu-The V, Labrie C, Simard J. DHEA and its transformation in to androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001 Jul; 22(3):185-212.
    151. Labrie F, Bélanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab. 1997 Aug;82(8):2403-9.
    152. Thiboutot D, Jabara S et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003 Jun;120(6):905-14.
    153. Bornstein SR, Allolio B et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016 Feb;101(2):364-89.
    154. North American Menopause Society. The role of testosterone therapy in postmenopausal women: position statement of the North American Menopause Society. Menopause 2005; 12(5):496–511. doi:10.1097/01.gme.0000177709.65944.b0. PMID: 16145303.
    155. Wüst S, Wolf J et al. The cortisol awakening response – normal values and confounds. Noise Health. 2000;2(7):79- 88.
    156. Tanriverdi F, Karaca Z, Unluhizarci K, Kelestimur F. The hypothalamo-pituitary-adrenal axis in chronic fatigue syndrome and fibromyalgia syndrome. Stress. 2007 Mar;10(1):13-25.
    157. Cleare AJ. The neuroendocrinology of chronic fatigue syndrome. Endocr Rev. 2003 Apr;24(2):236-52.
    158. Shackleton CH. Role of a disordered steroid metabolome in the elucidation of sterol and steroid biosynthesis. Lipids. 2012 Jan;47(1):1-12.
    159. Schöneshöfer M, Weber B. Estimation of urinary unconjugated androstenedione, dehydroepiandrosterone, testosterone, cortisol, aldosterone and 18-hydroxycorticosterone as a potential tool for assessing adrenal status. J Clin Chem Clin Biochem. 1983 Apr; 21(4):231-6.
    160. Thompson RD, Carlson M et al. Liquid chromatographic determination of dehydroepiandrosterone (DHEA) in dietary supplement products. J AOAC Int. 2000 Jul-Aug; 83(4):847-57.
    161. Parasrampuria J, Schwartz K, Petesch R. Quality control of dehydroepiandrosterone dietary supplement products. JAMA. 1998;280:1565.
    162. Mortola JF, Yen SS. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J Clin Endocrinol Metab. 1990 Sep; 71(3):696-704.
    163. McDaniel AB. An approach to managing fibromyalgia and chronic pain. Townsend Letter 2020 Nov; (448):31-36.
    164. https://en.wikipedia.org/wiki/The_dose_makes_the_poison. Accessed 12.4.2021.
    165. Elraiyah T, Sonbol MB et al. Clinical review: The benefits and harms of systemic dehydroepiandrosterone (DHEA) in postmenopausal women with normal adrenal function: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2014 Oct;99(10):3536-42.
    166. Conor Bentley, Jon Hazeldine et al. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. Burns Trauma. 2019; 7:26.
    167. Constantinou C, Margarity M, Valcana T. Region-specific effects of hypothyroidism on the relative expression of thyroid hormone receptors in adult rat brain. Mol Cell Biochem. 2005 Oct;278(1-2):93-100
    168. Li M, Boyages SC. Expression of beta2-thyroid hormone receptor in euthyroid and hypothyroid rat pituitary gland: an in situ hybridization and immunocytochemical study. Brain Res. 1997 Oct 31;773(1-2):125-31.
    169. Mitsuhashi T, Nikodem VM. Regulation of expression of the alternative mRNAs of the rat alpha-thyroid hormone receptor gene. J Biol Chem. 1989 May 25;264(15):8900-4.
    170. Scheffers CS, Armstrong S et al. Dehydroepiandrosterone for women in the peri- or postmenopausal phase. Cochrane Database Syst Rev. 2015 Jan 22;1:CD011066.
    171. Garg M, Dalela D, Dalela D, Goel A, Kumar M, Gupta G, Sankhwar SN. Selective estrogen receptor modulators for BPH: new factors on the ground. Prostate Cancer Prostatic Dis. 2013 Sep;16(3):226-32.
    172. Muti P, Westerline K et al. Urinary estrogen metabolites and prostate cancer: a case-control study in the United States. Cancer Causes Control. 2002; 13:947-955.
    173. Abd Elmageed ZY, Moroz K et al. High circulating estrogens and selective expression of ERβ in prostate tumors of Americans: implications for racial disparity of prostate cancer. Carcinogenesis. 2013 Sep;34(9):2017-23.
    174. Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt–a major factor in the genesis of morbid obesity. Med Hypotheses. 1999 Jan;52(1):49-51.
    175. Laaksonen DE, Niskanen L et al. The metabolic syndrome and smoking in relation to hypogonadism in middle-aged men: a prospective cohort study. J Clin Endocrinol Metab. 2005 Feb;90(2):712-9.
    176. Kumari N, Khan A et al. Comparison of Testosterone Levels in Patients With and Without Type 2 Diabetes. Cureus. 2021 Jul 9;13(7):e16288.
    177. https://www.rxlist.com/7-keto-dhea/supplements.htm. Accessed 12.3.2021.
    178. Delbeke FT, Van Eenoo P, Van Thuyne W, Desmet N. Prohormones and sport. J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):245-51.
    179. Moor RM, Polge C, Willadsen SM. Effect of follicular steroids on the maturation and fertilization of mammalian oocytes. J Embryol Exp Morphol. 1980 Apr;56:319-35.
    180. Tambe SS, Nandedkar TD. Steroidogenesis in sheep ovarian antral follicles in culture: time course study and supplementation with a precursor. Steroids. 1993 Aug;58(8):379-83.
    181. Knight JW, Jeantet MA. Effects of pregnenolone, cyclic adenosine monophosphate, and human chorionic gonadotropin on in vitro progesterone and estrone synthesis by the porcine placenta and endometrium. Domest Anim Endocrinol. 1991 Jul;8(3):331-41.
    182. Beal WE, Onthank DC, Zirkle SM. Effects of human chorionic gonadotropin and cyclic adenosine monophosphate on progesterone secretion by the ovine placenta. J Anim Sci. 1986 Jul;63(1):184-8.
    183. Ogino M, Kinoshita K et al. Metabolism of 14C-pregnenolone in the placenta throughout pregnancy in organ culture. Endocrinol Jpn. 1983 Oct;30(5):631-5.
    184. Matthews KA, Owens JF et al. Influence of hormone therapy on the cardiovascular responses to stress of postmenopausal women. Biol Psychol. 2005 Apr;69(1):39-56.
    185. Arbo BD, Andrade S et al. Effect of low doses of progesterone in the expression of the GABA(A) receptor α4 subunit and procaspase-3 in the hypothalamus of female rats. Endocrine. 2014 Aug;46(3):561-7.

Return to article